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Abbreviation Lists 
 
Table 1: Abbreviations 

Abbreviation  Definition  

AI Artificial Intelligence 

AR Augmented Reality 

CCTV Closed-Circuit Television 

CNN Convolutional Neural Network 

CPU Central Processing Unit 

CUD Chaussée Urbaine Démontable (Demountable Urban Roadway) 

CV Computer Vision 

DL Deep Learning 

DSLR Digital Single Lens Reflex 

EEM Early Equipment Management 

FCN Fully Convolutional Network 

FHD Full High-Definition 

FN False Negative 

FP False Positive 

GPS Global Positioning System 

GPU Graphics Processing Unit 
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Abbreviation  Definition  

GRDDC Global Road Damage Detection Challenge 

HDV Highway Diagnostic Vehicle 

HSV Hue Saturation Value 

IoU Intersection over Union 

MDOF Multi-Degree-Of-Freedom 

ML Machine Learning 

OSH Occupational Safety and Health 

PoIs Points of Interest  

RAM Random Access Memory 

RGB Red Green Blue 

RI Road Infrastructure 

RoI Region of Interest 

RUP Removable Urban Pavement 

SSD Single Shot Detector 

TN True Negative 

TP True Positive 

UAV Unmanned aerial vehicle 

UGV Unmanned Ground Vehicle 

VRAM Video Random Access Memory 

VS Visual Servoing 

YOLO You Only Look Once 

 
Table 2: Abbreviations of the Partners’ names 

Short name Participant organization name 

ICCS Institute of Communications and Computer Systems 

ACCI Acciona Construcción S.A. 

OLO Olympia Odos Operation S.A. 

UGE Université Gustave Eiffel 

ETHZ Eidgenössische Technische Hochschule Zürich 

ROB Robotnik Automation 

CORTE Confederation of Organisations in Road Transport Enforcement 

STWS SATWAYS - Proionta Kai Ypiresies Tilematikis Diktyakon Kai 

Tilepikinoniakon Efarmogon Etairia Periorismenis Efthinis EPE 

RISA RisaSicherheitsanalysen Gmbh 

INAC InnovActs 

IKH Ainoouchaou Pliroforiki SA -IKnowHow- 

RG Resilience Guard Gmbh 
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Glossary of Terms 
 
Table 3: Glossary of terms 

 

Term Explanation  

Visual 

servoing 

Visual servoing, also known as vision-based robot control and 

abbreviated VS, is a technique which uses feedback information 

extracted from a vision sensor (visual feedback) to control the 

motion of a robot. 
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Executive Summary 
 

This deliverable is written in the framework of WP3 – AI-based algorithms and tools 

Recognition, Classification and Localisation of the Points of Interest of the HERON project 

under Grant Agreement No. 955356. Deliverable 3.1, namely “AI - driven image segmentation 

and feature extraction”, provides a detailed description of the data flow that derives from the 

various sensors of the HERON system for the purpose of the efficient utilization of the RGB 

data in order to extract semantic information for the recognition, classification, localization, 

and segmentation of the points of interest (e.g., cracks, potholes, and blurred road markings). 

This report illustrates the outcomes of Task 3.1, titled: “AI-driven image segmentation and 

feature extraction” corresponding to M4-M12 of the HERON project’s period. 

 

To this end, the document presents the training, application, and evaluation process of 

advanced deep learning algorithms such as CNNs for classification, YOLO detector (You Only 

Look Once) for object localization, and FCNs (e.g., U-Net model) for image semantic 

segmentation and modeling towards identification, classification and localization of the PoIs. 

In particular, specific computer vision toolkits have been developed for feature representation 

of the HERON maintenance and upgrading tasks, such as patching potholes, replacement of 

RUP (removable urban pavement) elements, sealing cracks, painting blurred road markings, as 

well as dispensing and removing traffic cones in an automated and controlled manner. The 

methodology framework will address all identified categories of RI degradation so that 

HERON’s AI system is able to effectively initiate and guide, coordinate, and evaluate the 

various road maintenance procedures. 
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1 Introduction 
 

1.1 Purpose of the Document 
 

The specific document contains D3.1 “AI - driven image segmentation and feature extraction”. 

More specifically, D3.1 is the first deliverable within WP3, namely “AI-based algorithms and 

tools Recognition, Classification and Localisation of the Points of Interest” of the HERON 

project and it is a compilation of the work that was completed in the framework of task 3.1 

“AI-driven image segmentation and feature extraction”. 

 

The objective of this task is to apply state-of-the-art deep machine learning algorithms, such as 

CNNs and FCNs, for object detection, image semantic segmentation, and modeling toward 

recognition, classification, and localization of the PoIs. In particular, specific artificial 

intelligence toolkits that utilize optical data from various sensors (e.g., RGB, stereo cameras) 

have been developed for feature representation of the various HERON maintenance and 

upgrading tasks, such as for instance, potholes, blurred road markings, and cone detection as 

well as crack localization and segmentation. 

 

Thereby, in this report, the conceptual AI monitoring framework and the related information 

regarding the RI degradation detection are demonstrated and analyzed in detail. Furthermore, 

the optimal combination of the remote sensing platform and sensors (i.e., RGB, stereo cameras 

mounted on the UGV and/or UAV) is demonstrated. 

 

The remainder of this document is organized as follows: Initially, Section 2 discusses the 

scheduled inspection procedures, while Section 3 presents the sensing and hardware 

specification. Subsequently, Section 4 discusses and analyzes in detail the employed deep 

learning algorithms of the system, for the efficient classification, detection, and detection of 

the various defects of the road infrastructures. Lastly, Section 5 concludes this report. 

 

1.2 Intended Audience 
 

The specific deliverable report is public and therefore can be accessed by any interested 

stakeholder. Envisioned stakeholders involve, amongst others, the HERON end users. In 

particular, these are road operators, who are agents in the monitoring procedure as well as 

monitoring information consumers. Other envisioned stakeholders could be those interested in 

consuming tracking information to develop information products. These may incorporate risk 

and health assessment modules that need monitoring feedback and information in order to 

provide up-to-date hazard, risk, and vulnerability assessments. 

 

1.3 Interrelations 
 

The outcomes of HERON deliverables D2.1 and D2.2, namely “End-user needs and KPIs 

report” and “Architecture specification” respectively, serve as the guiding principles while 

composing the specific document. In particular, D2.1, which is related to the users’ 

requirements, contains the analysis of current practices, needs, and expectations from 

infrastructure stakeholders. In parallel, D2.2, which is related to the system architecture and 

design, includes the specifications of the HERON platform architecture, guidelines, and toolset 
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for development activities. Therefore, the two aforementioned deliverables directly involve the 

challenges and limitations that the AI monitoring framework of the HERON system should 

analyze and overcome, in order to efficiently facilitate the RI maintenance procedures. 

 

As can be observed in Figure 1, the fundamental AI-based toolkits that are presented in the 

present deliverable interact with all the rest technical and development WPs, such as the 

automation and control technologies (WP4), the design and construction of the automated UGV 

system (WP5), and the back-end system that will support the decisions from the road operators 

and managers (WP6). Subsequently, all these outcomes combined will feed the activities of 

WP7 for the assessment and validation of the HERON solutions in all the demonstration sites. 

 

 
Figure 1: Interrelation between the various WPs of the HERON project. 
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2 Scheduled Inspection Procedures 
 

Deterioration and defects on pavement lead to skidding, driving off tracks, improper 

maneuvering to avoid the road defects, and also prolonged driver braking distance which needs 

serious attention by traffic authorities. Besides that, poor surface macrotexture and 

microtexture could lead to hydroplaning and inconsistent tire pavement contact and also a 

reduction in tire gripping the pavement which eventually causes accidents. Any of the 

following applies to the specific category: roughness, rutting (deformation), potholes, and 

blurred road markings.  

 

Automated methods for visual inspection based on image processing and machine learning 

techniques have been applied in various infrastructure monitoring applications cases including 

roads [34], pavements [10], bridges [13], and tunnels [42]. In most cases, deep learning 

approaches serve as the core mechanism and in more specific scenarios, DL is coupled with 

knowledge-based post-heuristics, to boost the detection capabilities of the models [43]. 

 

To this end, the (semi-) automated HERON system relies on improved intelligent control of a 

multi-degree-of-freedom (MDOF) robotized vehicle, improved computer vision (CV), and 

Artificial Intelligence (AI)/Machine Learning (ML) techniques combined with proper sensors 

(see Figure 2), decision-making algorithms and AR components to perform corrective and 

preventive maintenance and upgrading of roadworks is considered an advanced solution, which 

pushes routine roadwork activities quite beyond the state-of-the-art. At the same time, by using 

advanced data coming from various sources (including V2I and aerial drone surveillance) and 

well-established methods (from existing know-how from research and industrial projects), the 

automated system will be able to provide some non-routine (emergency) maintenance 

operations when required. 

 

 
Figure 2: From traditional tools to robotic sensors and actuators. 

 

Towards that direction, HERON targets the development and prototype validation of an 

innovative, automated intelligent robotic platform that utilizes state-of-the-art computer vision 

techniques for performing the necessary maintenance tasks safely, promptly, reliably, and 

modularly (see Figure 3). In this section, the employed inspection procedures and the mission 

planning are presented in the context of the three HERON pilot sites. 
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Figure 3: HERON’s concept. 

 

2.1 Employed inspection processes and mission planning 
 

2.1.1 Monitoring objects 

HERON AI framework will apply advanced DL algorithms such as for instance CNNs for 

modeling towards recognition, classification, and localization of the PoIs and FCNs for image 

semantic segmentation. In particular, specific DL toolkits will be developed and be analyzed 

in the following sections for feature representation of the HERON maintenance and upgrading 

tasks can be summarized in the following: 

 

• Crack features (see Figure 4a) 

• Pothole features (see Figure 4b) 

• Road marking features (see Figure 4c) 

• Removable urban pavement (RUP) features (see Figure 4d) 

• Traffic cone features (see Figure 4e) 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
                        (d) 

 
                        (e) 

Figure 4: Employed inspection processes. 
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Cracks 
Pavement cracks are distresses of the pavement that occur on its surface. There are different 

types of pavements that create different cracks. The type of each cracking is highly related to 

the climate and traffic. The most common factor of crack pavement is moisture. Once moisture 

enters the pavement, it causes it to break down. In particular, moisture removes the sand and 

gravel from the base. As a result, the asphalt surface breaks or cracks. Therefore, pavement 

maintenance is required. The pavement restoration procedure includes the purification of the 

crack and the implementation of the material in order to fill the crack. 

 

Potholes 
Potholes are defined as depressions in the asphalt pavement. Potholes are usually caused by 

water that weakens the underlying soil structure and traffic that breaks the asphalt surface 

which is in poor condition. As a result, both asphalt and underlying soil material are removed, 

creating a hole in the pavement. Other reasons that cause potholes include insufficient 

pavement endurance to support traffic during extreme weather periods and lack of maintenance 

on the pavement. Pothole restoration procedures include the cleaning of the pothole, the 

implementation of the material to fill the pothole and the leveling of the material. 

 

Road surface markings 
Road surface marking is mainly material that is used on a road surface in order to provide 

official information to the drivers. They are usually placed with road marking machines. They 

can also be applied in other situations to mark parking spaces or define areas for other uses. 

Due to technological development, there is a big effort to improve the road marking system at 

a low cost. Today, road markings are used to communicate a wide range of information to the 

driver regarding safety and enforcement issues. This leads to their use in the road environment 

through advanced driver-assistance systems. As a result, the development of autonomous road 

vehicles is considered in the future. 

 

Removable urban pavement 
A removable urban pavement (RUP) is a pavement that can be opened and closed quickly by 

using lightweight equipment. Their main purpose is to provide easy access to underground 

networks. The idea of this concept comes from certain military paths or industrial soils. 

However, these pavements demand frequent work, even after construction or maintenance. 

Therefore, RUP causes major disturbance to the human environment, causing noise, air 

pollution and traffic congestion. In addition, RUP might have a negative impact on the street's 

architectural harmony. 

 

Traffic cones 
Traffic cones are most commonly cone-shaped markers that are placed on roads or footpaths 

to provide effective road management during road operations or automobile accidents. Traffic 

cones are also used to advance warning of hazards or dangers, or the prevention of traffic. 

Traffic cones are also used when children are playing or to block off an area. During night-

time or low-light situations, traffic cones are used to increase the visibility of road limits. In 

some cases, traffic cones may also be fitted with flashing lights for the same reason. Cones are 

easy to move or remove. However, when purchasing traffic cones, it is important to be aware 

of safety standards and follow the appropriate guidelines in each area. 

 

https://en.wikipedia.org/wiki/Cone_(geometry)
https://en.wikipedia.org/wiki/Traffic_collision
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2.1.2 Monitoring impact 

The development of the HERON’s AI framework will have an impact on three fundamental 

areas: technical, economic, and occupational safety and health (OSH) administration. 

 

At a technical level, HERON will showcase that it is possible to make a fully functional and 

efficient (semi-) automated system composed of commercial machines that work in a fully 

integrated manner, using the latest technologies in localization, navigation, AI/ML, 

comprehensive planning, decision-making, and automated manipulators to carry out complex 

maintenance and upgrading roadworks. 

 

In parallel, economically, once the HERON technology will be technically proven and widely 

accepted by both road authorities and the public, then it will reach a point of commercialization. 

HERON is expected to have an impact in reducing the personnel needed to perform on-site 

roadworks. These people could be assigned to perform other tasks in the same company, which 

would reduce overall execution times or carry out a greater number of activities. Specifically, 

focusing on actions on the roadworks, a summary of the estimated reduction in resources per 

task is shown in Table 4. This local reduction of workers (although the total number will remain 

the same in the company) will make it possible to amortize the technological investment of the 

systems included in machines and their integration, generating economic savings from year “n” 

of amortization and holding jobs for people. 

 
Table 4: Summary of the expected reduction of resources due to the usage of the HERON system. 

Task 
Workers needed 

conventionally 

HERON estimated 

number of workers 

HERON 

impact 

Sealing cracks and patching 

potholes 
3 or 4 in-situ 

1 supervisor of the 

UGV assisted by 1 

drone pilot (if needed) 

33% to 50% 

Painting road markings 2 or 3 in-situ Up to 50% 

Dispensing and removing 

traffic cones 
2 or 3 in-situ Up to 50% 

Visual inspections 2 or 3 in-situ Up to 50% 

 

Lastly, at the occupational health and safety (OSH) level, HERON allows fewer people to work 

on a road while there is still traffic on the rest of the lanes, which reduces the chances of being 

run over in the event of an accident. On the other hand, the number of people who are in contact 

with hot substances that emit toxic fumes (e.g., bitumen and paints) will be reduced to a 

minimum level. 

2.1.3 Monitoring strategy - mission planning 

Regarding the monitoring strategy and planning as well as data acquisition of the HERON’s 

sensing interface and AI component, as can be observed in Figure 3, the following steps below 

must be performed: 

 

1. The UGV has to know in advance the rough location (with an accuracy of a few 

centimeters) of the RoI (e.g., crack, pothole, blurred road marking) by acquiring and 

utilizing knowledge (e.g., GPS coordinates) from an available source (e.g., the Operator 

specifies the location or a UAV localizes the damage of the road surface). 

2. The UGV is activated and approaches the specified maintenance location. 

3. The UGV examines the area by utilizing the mounted sensors in order to precisely 

localize and possibly segment the defected region of the RI. 
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4. The Operator provides the final approval and possibly calibrates the maintenance 

details, based on the feedback (i.e., detection of the RoI) received by the UGV sensors. 

5. The UGV initiates the maintenance procedure (see Figure 5) by dispensing traffic cones 

on the road in an automated and controlled manner. 

6. The UGV implements the maintenance work (see Figure 5) by constantly receiving data 

in real-time and re-evaluating the process, based on the mounted sensors. 

7. The UGV finalizes the maintenance process (see Figure 5) by localizing and removing 

the traffic cones from the road in an automated and controlled manner, and then the 

Operator finalizes the mission and recalls the UGV to its base. 

 

 
Figure 5: Identified use cases of the HERON project and mission planning of the maintenance process. 

 

It is noted that regarding steps 5-7, additional information can be found in D2.1: End-user needs 

and KPIs report. Regarding the aforementioned objects (such as for instance, as depicted in 

Figure 5, cracks, potholes, blurred road markings, and traffic cones) that the AI component will 

be able to recognize, classify, and localize, Table 5 presents an overview of the proposed 

monitoring strategy which will act as the flagship of HERON’s AI system by initiating, 

guiding, coordinating, and evaluating the road maintenance process.  

 
Table 5: Monitoring strategy and technique for each of the identified use cases of the HERON project. 

Object to  

be identified 
Sensor 

Processing 

technique 

Monitoring 

information 

Crack 

• Optical camera on the UGV 

• Optical camera on the UAV 

• Stereo camera on the UGV 

• Image processing 

• Deep learning 

• Object detection 

• Semantic 

segmentation 

• Location 

• Size 

• Depth 

• Type (if needed) 

Pothole 

• Optical camera on the UGV 

• Optical camera on the UAV 

• Stereo camera on the UGV 

• Image processing 

• Deep learning 

• Object detection 

• Location 

• Size 

• Depth 

Blurred 

road 

marking 

• Optical camera on the UGV 

• Image processing 

• Deep learning 

• Object detection 

• Location 

• Size 

Traffic cone 
• Optical camera on the UGV 

• LiDAR (if needed) 

• Image processing 

• Deep learning 

• Object detection 

• Location 
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In particular, as illustrated in Figure 6A, regarding the pothole maintenance task, through the 

precise localization of the defect by the AI component utilizing RGB and stereoscopic data 

from the mounted sensors, the UGV will be able to: 

i. clean the correct part of the road of dust and debris, 

ii. calculate the depth of the pothole, by utilizing the input of a mounted stereo camera, in 

order to calculate the amount of the material that has to be poured, 

iii. be positioned in the right spot in order to: 

a. fill the pothole with patching material, 

b. level the material, and 

c. compact the material. 

Furthermore, as presented in Figure 6B, concerning the RUP replacement procedure (which is 

further described in Section 2.2.2), through the accurate detection of the slab as well as the 

potential defect on it by the AI component utilizing RGB data from the mounted sensors, the 

UGV will be able to: 

i. lift the defected slab by using the robotic arm, 

ii. place the new non-defected slab by using the robotic arm, 

iii. be positioned in the right spot in order to: 

a. manipulate the sand-like material, 

b. possibly remove any debris (e.g., stones) that are present in the area, 

c. possibly fill the region with extra sand-like material, and 

d. level the replaced slab. 

 

In parallel, as depicted in Figure 6C, regarding the crack maintenance process of the road 

infrastructure, through the localization and pixel-wise segmentation of the defect by the AI 

component utilizing RGB and stereoscopic data from the mounted sensors, the UGV will be 

able to: 

i. clean the correct part of the road of dust and debris, 

ii. calculate the depth of the crack, by utilizing the input of a mounted stereo camera, in 

order to calculate the amount of the material that has to be poured, 

iii. guide effectively the robotic arm (visual servoing) in order to correctly apply the sealant 

material to the crack faces, and 

iv. constantly reposition itself along the entire length of the crack defect. 

 

Subsequently, as for the blurred road marking painting process (see Figure 6D) through the 

precise identification of the faded road line by the deep learning framework that is fed with 

RGB data deriving from the optical sensors, the UGV will be able to: 

i. repaint the correct (deteriorated) part of the road marking, 

ii. constantly reposition itself along the entire length of the road marking. 

 

Lastly, as shown in Figure 6E, the effective traffic cone automated localization through the 

deep network that utilizes optical data from the mounted sensors will result in the HERON 

system being able to: 

i. dispense the cones on the road in an automated and controlled manner, 

ii. remove the cones from the road in an automated and controlled manner, and 

iii. assist the fully autonomous operational and safe navigation and positioning of the UGV. 
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Figure 6: The main maintenance procedures that will be performed by the HERON system, i.e., (A) 

patching potholes, (B) replacement of RUP elements, (C) sealing cracks, (D) painting blurred road 

markings, and (E) dispensing and removing traffic cones in an automated and controlled manner. 
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2.2 HERON pilot sites 
 

HERON will perform extensive tests in three demonstration sites, in Spain, France, and Greece. 

The adoption of three separate pilots instead of one to demonstrate the whole system and all of 

its components is selected since in real-world maintenance scenarios the system to be 

implemented will be directed to the indicated PoIs along with the RIs and will be targeted to 

specific applications that are to say “seal a crack” or “patch a pothole” or “CUD-feature”, etc. 

plus the assisting roadworks (e.g., spraying, put/remove cones, etc.). Different scenarios can 

be included in the same pilot test and executed in a subsequent manner. The specific section 

will underline the features and monitoring needs of the HERON end-users that have been 

identified in the deliverable report D2.1. For a more in-depth description and analysis of all 

end-user needs, refer to the corresponding documentation. 

2.2.1 Spanish pilot (ACCI) 

The pilot will be deployed in the A2 Motorway stretch (see Figure 7) maintained by the 

company (R2–CM42 stretch, coming from Madrid, and finishing in the limit between the 

provinces of Guadalajara and Soria, Spain), and in the traffic control center of the stretch 

located near the village of Torija. The motorway is owned by the Spanish National Road 

Authority and the section selected has a length of 77.5 km. The section has 4 lanes (2 per traffic 

direction) and crosses a region with Continental-Mediterranean climate, with long and severe 

winters, long, dry and hot summers and high heavy traffic levels, so the pavement is exposed 

to severe requirements and maintenance is crucial to preserve the optimum pavement 

conditions required. A2 is one of the main motorways in Spain, connecting Madrid with 

Barcelona, it is part of the Trans-European Transport Network (TEN-T) and the CEF corridor. 

 

  
Figure 7: UAV images of A2 showing the typical maintenance after cracks sealing and patching. 

 

The Toraja's traffic control center is in charge of monitoring the motorway status, visualizing 

and assessing the data provided by CCTV, inductive loops, GPS-based fleets, weather stations, 

weigh in motion systems, etc. It is also the basecamp for all assets needed for maintenance 

(e.g., machinery) and can be the ideal location for the preliminary trials of the different 

functionalities and robotic abilities developed in HERON. 

 

The tailor-made image processing system for visual drones and sensing and CV installed in the 

robotic vehicle will be validated using real video and images and correlated with the 

information included in the existing road project and gathered during regular visual inspections 

and general patrolling. 

 

After the initial validation of the automated vehicle and maintenance and upgrading 

functionalities, if the traffic authority permits the use of automated vehicles, a full-scale trial 

in a controlled stretch with certain defects and maintenance/upgrading needs will be carried 

out counting on the support of the Spanish National Roads Authority. 
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2.2.2 French pilot (UGE) 

Transpolis (see Figure 8) is a proving ground of more than 80ha, which has been created by 5 

entities among which UGE and which has been opened officially in 2019. It is typically used 

to test autonomous vehicles in a secure and controlled environment, also by assessing the V2I 

communication possibilities (several types of Road-Side- Units- RSUs- and communication 

means) are already installed on-site. It also is composed of several kilometers of road and all 

reinforced concrete buildings. Many types of V2X and I2V (Infrastructure to Vehicle) 

communication means are available, as well as camera monitoring, all of them will be used 

during the HERON activities. 

 

 
Figure 8: The demonstration sites to be offered by UGE in France. 

 

Another experimental site (see Figure 9), part of the French project R5G (Route de 5ème 

generation, the French declination of the European Forever Open Road programme), is 

proposed: the site LaVallée, also called E3S, is an urban development project at the former 

place of Ecole Centrale de Paris where several new mobility infrastructures and services will 

be implemented to create an evolutive, energy-neutral and cooperative road. In particular, the 

concept of urban removable pavement will be studied, using hexagonal concrete slabs 

prefabricated. These removable tiles allow quick access to networks, improve the durability of 

surface properties of roadways and can be recycled. Their prefabrication should make it 

possible to offer other integrated functions (various textures, porous, silent or depolluting 

surfaces, insertion of sensors, etc.). Currently, this CUD concept is not fit for TEN-T traffic, 

so inspecting these tiles regularly for cracks and repairing them is crucial. The damages are 

spalling at the interfaces between CUD elements and cracks among them. Currently, their 

initial installation and their replacement are done using motorized arms piloted manually. 

 

 
Figure 9: Urban Pavement for smart city planning: the pre-fabricated road. 

2.2.3 Greek pilot (OLO) 

OLO has undertaken the traffic management and routine maintenance of the Elefsina-

Korinthos- Patra motorway (in the heart of the Greek highway networks), which has 202 km 

total length and includes more than 25 km of tunnels and a large number of bridges, culverts, 

and ancillary structures (see Figure 10). It includes corrective and preventive maintenance both 
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of civil works equipment and Early Equipment Management (EEM) of open roads and tunnels. 

OLO will provide a part of the motorway, where extensive tests of the automated vehicle can 

take place, issuing the necessary permits in cooperation with the relevant Authorities (Public 

Service and Traffic Police) and ensuring safety conditions both for the road users and the 

people working for the project. The area that will be examined during the pilot program is the 

ELKO section, which is a dual carriageway with three lanes (3.5m width left lane, 3.75m width 

middle and right lane) and an emergency lane (varies from 2.5 to 3.5m) per direction with 

concrete New Jersey safety barriers in the central axis of the motorway. Some major technical 

features of the ELKO section:  

• Total length: 64 km 

• Interchanges (I/C): 12 

• Bridges: 16 

• Tunnels: 5 (total length of 4,473 km). 

 

  
Figure 10: Photos from the initially selected demonstration sites to be used from OLO, including tunnels 

(left), bridges, and interchanges (right). 
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3 Sensing and hardware specification 
 

3.1 Sensors 
 

To achieve recognition and localization of the various road defects and objects of interest, real-

time 2D and 3D visual information will be needed. Most of the quoted Deep Learning models 

work with 2D RGB images, nevertheless, depth information is also required to deduce the 

relevant position of a detected object to the UGV’s frame of reference, so it can proceed with 

the mending tasks. 

 

For this purpose, Zed 2i cameras will be used (see Figure 11 and Table 6). They will be 

mounted circumferentially to the UGV and due to their wide angle of view, the whole of the 

robot working space will be covered. Zed 2i is a stereoscopic camera, which means that it uses 

a pair of normal RGB cameras to perceive depth via triangulation, thus acquiring normal RGB 

images, together with depth information of each pixel. 

 

 
Figure 11: Zed 2i - industrial AI stereo camera. 

 
Table 6: Specifications of the Zed 2i. 
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This camera covers all the needs of computer vision algorithms. Nevertheless, because of the 

wide-angle of view and the small imaging sensor that this camera has, as well as the slow 

shutter speed, some information and details of the road will be lost, which might affect 

negatively some of the detection tasks. If this is the case, a high-end industrial camera (MER2-

2000-19U3C) is selected to be also deployed alongside Zed 2i, in case of detection accuracy is 

less than the target value (see Figure 12 and Table 7). This camera uses a Sony IMX183 sensor 

which has much fewer distortions that Zed2i, and more than double its resolution (5496×3672 

instead of FHD). 

 

  
Figure 12: MER2-2000-19U3C – scan industrial camera. 

 
Table 7: Specifications of the MER2-2000-19U3C. 

Interface USB3 

Resolution 5496×3672 

Frame rate 19fps 

Pixel Size 2.4uM 

Color/Mono Color 

Sensor Type Sony IMX183 

Optical Size 1" 

Shutter Type Rolling Shutter 

Shutter time 12us~1s 

ADC Bit Depth 12bit 

Pixel Bit Depth 8bit, 12bit 

Digital gain 0dB~24dB 

Pixel Data Format BayerRG8 / BayerRG12 

Synchronization Hardware trigger, software trigger 

I/O 1 opto-isolated input line and 1 opto isolated output line, 2 GPIO 

Operating Temp. 0°C~45°C 

Operating Humidity 10%~80% 

Lensmount C 

Dimensions 29×29×29mm 

Software Windows / Linux / Android 

Power Consumption <2.7W@5V 

Weight 65g 

Conformity RoHS, CE, FCC, USB3 Vision, Genicam 

 

3.2 Processing components specification 
 

There are multiple needs for processing power for each software module and the most 

important will be discussed. Firstly, Zed SDK requires both CPU and GPU processing power 

for the relevant triangulation processes, namely at least a Quad-core processor of 2,7GHz, 8GB 
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of RAM, and NVIDIA 1060GTX GPU. Secondly, the Deep Learning models described in this 

report require a recent dedicated NVIDIA GPU with CUDA cores, and at least 6GB of VRAM. 

The higher the VRAM is, the better DL detection capabilities will enable (12GB of VRAM 

will be enough to infer any size of the image through the neural networks). Lastly, the various 

pre and post-processing computer vision algorithms will need a powerful processor with 

multiple threads, like Intel Core i7-11700 and RAM of at least 16GB, as they will need to run 

in parallel with the robot navigation processes. 

 

It is noted that in case of size and power constraints, the Deep Learning models as well as the 

other software can be optimized to run in an embedded device like Jetson (see Figure 13 and 

Table 8). However, there will be a trade-off between detection accuracy and processing power 

if the hardware capabilities are lower than the previously mentioned, thus an embedded device 

cannot be specified yet, because it must reach first the desired criteria. 

 

 
Figure 13: Jetson TX2 Module. 

 
Table 8: Technical Specifications of Jetson TX2. 

GPU 256-core NVIDIA Pascal™ GPU architecture with 256 

NVIDIA CUDA cores 

CPU Dual-Core NVIDIA Denver 2 64-Bit CPU 

Quad-Core ARM® Cortex®-A57 MPCore 

Memory 8GB 128-bit LPDDR4 Memory 

1866 MHx - 59.7 GB/s 

Storage 32GB eMMC 5.1 

Power 7.5W / 15W 
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4 Deep learning algorithms 
 

The traditional road inspection procedures, carried out by engineers/technicians, do not only 

pose safety risks, that may lead to worker injuries and accidents, but are also costly and time-

consuming. Furthermore, they require heavy machinery that results in hindrances in road and 

traffic. In addition, it is clear that identification of the defected areas is performed using manual 

visual inspection, potentially leaving damage unnoticed in the inaccessible areas of the road 

infrastructures. Therefore, it is beneficial to adopt computerized methods, such as computer 

vision and machine learning, for efficient defect inspection and classification. 

 

Indeed, precise localization and classification of defects overcome all the aforementioned 

limitations in inspecting defects on road infrastructures. Additionally, they trigger the novel 

concept of automated maintenance [31] by (i) precisely assessing the damage and extracting 

accurate measurements of it through the use of computerized methods, (ii) driving maintenance 

robots to repair the damage, especially in difficult to access areas, and (iii) stimulating the 

concept of prefabrication through which the repaired components are constructed off-site and 

then are transferred to the road infrastructure to be easily replaced. 

 

Currently, there is a great research interest in automatic visual inspection of defects on road 

infrastructures, such as for instance cracks, potholes, and blurred road markings, by analyzing 

visual data. Generally, the deteriorated road surface produces rough surfaces (see Figure 14). 

For this reason, usually color distributions, in different color spaces, i.e., HSV, are utilized to 

detect road surface defects [22].  

 

   
(a) Non-deteriorated road surface (b) Road surface with cracks (c) Road surface with potholes 

   

  
                                  (d) Non-deteriorated road marking          (e) Blurred road marking 

  

Figure 14: Non-deteriorated road surfaces (a, d) tend to present a more uniform distribution of colors 

compared to defected ones (b, c, e). 
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These distributions are represented through a mixture of Gaussian models or reconstructed 

using unsupervised machine learning schemes such as the k-means [28]. The key idea behind 

these methods is that the defected areas tend to present non-uniformity (see Figure 14a and d), 

in contrast to non-defected ones (see Figure 14b, c and e) where the colors are smoother and 

consistent [23]. In this context, image analysis based on color and textural characteristics can 

be exploited as an auxiliary tool, through which we are able to discriminate and quantify 

material deterioration more effectively [29].  

 

Although these techniques are computationally efficient and easy to be implemented, even with 

a limited number of ground truth data, they fail to precisely localize the contours of the defected 

regions, and thus they are not suitable for robotic-driven maintenance and prefabrication 

procedures. Moreover, the defect detection performance also deteriorates in cases where the 

color properties of the non-defected regions are similar to the defected ones [22]. 

4.1 Computer vision tasks 
 

Recently, with the progress of AI technology and deep learning, automatic visual inspection of 

road infrastructures is performed using Convolutional Neural Networks (CNNs) architectures 

on RGB data for road health monitoring [41]. The main advantage of such approaches is that 

they increase detection and classification accuracy compared to the color distribution modeling 

since ground truth (annotated) data are exploited throughout the learning process, making the 

CNN structures better identification architectures of defected regions. 

 

In general, deep learning-driven defect detection (e.g., crack, pothole, and blurred road marking 

identification), is a computer vision problem that can be handled as a (i) classification, (ii) 

object detection, or (iii) semantic segmentation task. In the first approach, the deep learning 

algorithm provides a binary outcome with some metric (e.g., probability), with a positive 

outcome indicating the presence of at least one defected region in the image, and a negative 

outcome indicating that the whole road of the image is defect-free (see Figure 15a). In the 

second procedure, the deep learning model returns bounding boxes that localize and indicate 

the dimensions of every instance of defected areas (see Figure 15b). The last method involves 

pixel-based classification techniques that create segmentation masks, thus giving us a granular 

understanding of the shape of the defected surface (see Figure 15c). 

 

   
(a) Classification (b) Object detection (c) Semantic segmentation 

Figure 15: Comparison of the three different deep learning approaches, in the crack identification task. 
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Although the first approach is useful for visual inspection, as it indicates the presence of road 

damages in certain areas of the infrastructure, it cannot be suitable for automated maintenance 

since it cannot precisely localize and classify the defected regions. On the contrary, precise 

object detection (see Figure 15b) or pixel-wise classification (see Figure 15c) gives us detailed 

information related to various metrics, such as the area, maximum distance, aspect ratio, and 

shape of the defected region, useful for prefabrication, a practice through which we are able to 

design and fabricate individual precast components outside of the infrastructure. It is noted that 

prefabrication has several benefits such as reduced working risks, improved traffic flows, and 

(cost and time) maintenance optimization. For instance, it has been estimated that adopting 

prefabrication as a construction methodology could result in 70% time savings and 43% labor 

cost reductions [21]. 

 

Apart from a precise localization of a damaged region, a simultaneous classification of its 

defect type is required to properly simulate a maintenance procedure. Thus, we need to 

categorize a defected region into damage type (see Figure 16) which, in the sequel, trigger 

different maintenance actions from the robotic vehicle. To achieve, however, precise 

localization of a defected region, we need to move from local image processing, like the one 

deriving from the CNN deep learning models to a global-local one. 

 

Local processing analyzes small size image patches independently and thus it may lead to 

misclassification mainly where similarities (color, texture, etc.) between the defected and non-

defected regions are encountered. Instead, a global-local data processing first decomposes the 

image data into scales and then proceeds with a local analysis. Global-local data processing 

has been proposed for detecting regions of interest in medical data through the use of Fully 

Convolutional Networks (FCNs) [30] and their variants U-Nets [46]. Global features represent 

the whole image content, whereas local features are responsible for the precise localization of 

the region contours. 

 

 
Figure 16: Representative photographic examples of the three road defects (i.e., crack, pothole, and 

blurred road marking) as well as their automated localization using a deep CNN classifier.  
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In a nutshell, as shown in Figure 14, automated road defect recognition can be distinguished 

between the following three computer vision tasks, which are further analyzed in the following 

sections below (see Sections 4.1.1-4.1.3): 

• Image Classification: Predicts the class of an object (defect) in an image. 

• Object Detection: Locates the presence of objects (defects) with a bounding box and 

classifies the located objects (defects) in an image. 

• Object (or semantic) segmentation: Locates the presence of objects (defects) by 

highlighting the specific pixels of the object (defect) instead of a coarse bounding box. 

 

 
Figure 17: Overview of object recognition computer vision tasks. 

4.1.1 Classification 

Image classification, as well as object detection and image segmentation techniques, is a 

method highly related to the domain of computer vision. In particular, these techniques help 

machines understand and identify objects and environments in real-time via inputs such as 

images. Until today, computer vision techniques are highly used in several sectors, including 

healthcare, manufacturing, retail, etc. Despite the fact that both methods are used in object 

identification, there are many differences between them. In simple words, image classification 

is a technique that is used to classify or predict the class of a specific object in an image. The 

basic scope of this technique is to identify the features in an image. 

 

In general, the image classification techniques are divided into either parametric and non-

parametric or supervised and unsupervised as well as hard and soft classifiers. For supervised 

classification, this technique delivers results based on the input and output provided while 

training the model. On the other hand, the unsupervised classification technique provides the 

result based on the analysis of the input dataset. In this case, features are not directly fed to the 

models. 

 

The main steps of image classification techniques include the identification of a suitable 

classification system, feature extraction, selecting good training samples, image pre-processing 

 
Object recognition 

Image classification Object localization 

Object detection 

Object segmentation 
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and selection of appropriate classification method, post-classification processing, and finally 

assessing the overall accuracy. During this technique, the inputs are usually an image of a 

specific object and the outputs are the predicted classes that define and match the input objects. 

Convolutional Neural Networks (CNNs) is the most popular neural network model that is used 

for image classification problem. 

 

Types of image classification techniques 
The supervised image classification techniques include the parallelepiped technique, minimum 

distance classifier, and maximum likelihood classifier, among others. Several other types of 

image classification techniques as mentioned below. In particular, image classification can be 

based on the: 

• information acquired from different sensors, 

• nature of the training sample, 

• basis of the various parameter used in data, 

• nature of pixel information used in data, 

• number of outputs generated for each spatial data element, and 

• nature of spatial information. 

 

Disadvantages of classification methods 
In supervised and unsupervised image classification techniques, the disadvantages include the 

extensive amount of time required during the training phase and the fact they can’t deal with 

big data. Moreover, the classification methods would output only a probability distribution of 

interested classes, and are not able to localize an object in a given image. 

 

Image classification using a general multi-label CNN classifier 
A general defect classifier is a multi-label CNN architecture. It is noted that a CNN consists of 

three main types of neural layers, namely (i) convolutional layers, (ii) pooling layers, and (iii) 

fully connected layers. Each type of layer plays a different role: 

 

• Convolutional layers: In the convolutional layers, CNN utilizes various kernels to 

convolve the whole image as well as the intermediate feature maps, generating various 

feature maps. Because of the advantages of the convolution operation, several works 

(e.g. [36]) have proposed it as a substitute for fully connected layers with a view to 

attaining faster learning times. 

• Pooling layers: Pooling layers are in charge of reducing the spatial dimensions (width 

x height) of the input volume for the next convolutional layer. The pooling layer does 

not affect the depth dimension of the volume. The operation performed by this layer is 

also called subsampling or downsampling, as the reduction of size leads to a 

simultaneous loss of information. However, such a loss is beneficial for the network 

because the decrease in size leads to less computational overhead for the upcoming 

layers of the network, and also it works against over-fitting. Average pooling and max 

pooling are the most commonly used strategies. In [9] detailed theoretical analysis of 

max pooling and average pooling performances is given, whereas in [48] it was shown 

that max-pooling can lead to faster convergence, select superior invariant features and 

improve generalization. 

• Fully-connected layers: Following several convolutional and pooling layers, the high-

level reasoning in the neural network is performed via fully-connected layers. Neurons 

in a fully connected layer have full connections to all activations in the previous layer, 

as their name implies. Their activations can hence be computed with a matrix 
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multiplication followed by a bias offset. Fully-connected layers eventually convert the 

2D feature maps into a 1D feature vector. The derived vector could be either fed forward 

into a certain number of categories for classification [25] or could be considered as a 

feature vector for further processing [15]. 

 

As illustrated in Figure 18 the architecture of CNNs employs three concrete ideas: (i) local 

receptive fields, (ii) tied weights, and (iii) spatial subsampling. Based on the local receptive 

field, each unit in a convolutional layer receives inputs from a set of neighboring units 

belonging to the previous layer. This way, neurons are capable of extracting elementary visual 

features such as edges or corners. These features are then combined by the subsequent 

convolutional layers in order to detect higher-order features. 

 

 
Figure 18: The architecture of a CNN model for multi-label defect detection. 

 

However, as already mentioned in the previous section, though the classification approach is 

useful for a rough visual inspection of the road infrastructure, since it indicates the presence of 

road defects in certain areas of the highway, it cannot be suitable for automated maintenance 

since it cannot effectively localize in detail and classify the damaged areas (i.e., cracks, 

potholes, and blurred road markings). On the other hand, as presented in the next two 

subsections, an object detection task (see Section 4.1.2) or a precise pixel-wise classification 

(see Section 4.1.3) gives us detailed feedback related to the damaged area. 

4.1.2 Object detection 

The scope of object detection is to determine where objects are located in a given image such 

as object localization and which category each object belongs to, like object classification. In 

general, object detection is a type of image classification technique that also identifies the 

location of the object instances from a large number of predefined categories in images. 

 

This technique can also search for a specific class of objects, such as cars, people, animals, etc. 

Moreover, object detection techniques are also used in the next-generation image as well as 

video processing systems. The recent advancements in this technique have only become 

possible through deep learning methodologies. Object detection techniques can be used in real-

world projects such as face detection, pedestrian detection, vehicle detection, traffic sign 

detection, video surveillance, etc. 

 

How object detection works 
The pipeline of traditional object detection models can be mainly divided into three stages, i) 

informative region selection, ii) feature extraction, and iii) classification. There are several deep 

learning-based models for object detection, which have been used by big organizations in order 

to achieve efficiency as well as accurate results in detecting objects from images. The most 

popular models include MobileNet, You Only Look Once (YOLO), Mark-RCNN, RetinaNet. 
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Disadvantages of object detection methods 
The main issue of object detection techniques involves poor performance when objects are 

placed in arbitrary poses in a cluttered and occluded environment. 

 

Object detection using YOLOv5 (You Only Look Once) model 
YOLO is a fast real-time multi-object detection algorithm, which was first outlined in 2015 

[44] and since its first inception, many modifications have been proposed to improve and speed 

up the detection process. YOLO is an acronym for 'You only look once' and is a target detection 

algorithm based on a regression algorithm that uses Neural Networks to provide real-time 

object detection. Its usefulness comes due to the fact that it completes the prediction of the 

classification and location information of the objects according to the calculation of the loss 

function, so it transforms the target detection problem into a regression problem [27]. This 

algorithm uses the most advanced detection technologies available at the time and optimizes 

the implementation for best practice [14]. 

 

In this implementation, we utilize YOLOv5, which holds the best performance among YOLO 

algorithms. It is based on the PyTorch framework and its functionality comes from the fact that 

it is a suitable lightweight detector that can balance detection accuracy and model complexity 

under the constraints of processing platforms with limited memory and computation resources 

[55]. As can be seen in Figure 19 the architecture of the model YOLOv5 consists of three parts: 

(i) Backbone: CSPDarknet, (ii) Neck: PANet, and (iii) Head: YOLO Layer. The data are 

initially input to CSPDarknet for feature extraction and subsequently fed to PANet for feature 

fusion. Lastly, the YOLO Layer outputs the object detection results (i.e., class, score, location, 

size). The architecture of the model can be seen in Figure 19. 

 

 
Figure 19: The architecture of the model YOLOv5, which consists of three parts: (i) Backbone: 

CSPDarknet, (ii) Neck: PANet, and (iii) Head: YOLO Layer. The data are initially input to CSPDarknet 

for feature extraction and subsequently fed to PANet for feature fusion. Lastly, the YOLO Layer outputs 

the object detection results (i.e., class, score, location, size). 
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4.1.3 Image segmentation 

Image segmentation can be considered as a further extension of object detection. Through 

image segmentation, we can detect objects (as in object detection) via pixel-wise masks for 

each image. Therefore, image segmentation helps us gain a deeper understanding of the 

shapes/curves of objects. In addition, we can also define the class of each pixel in the image. 

Image segmentation can be specifically helpful if we want to have more information about each 

segment of an object. 

 

Semantic segmentation 
Semantic segmentation labels each pixel with its class label without differentiating about 

instances. In semantic segmentation, a model is trained in order to produce high-resolution 

semantic segmentation. On the one hand, semantic segmentation an encoder/decoder structure 

utilizes downsampling and upsampling. Downsampling produces lower-resolution feature 

mappings which help with differentiating the classes. On the other hand, upsampling produces 

a higher-resolution segmented image. Both techniques are ideal for simple object detection in 

an image. However, image segmentation provides more information about the image. 

 

Semantic segmentation using a U-Net model 
The simplest method is to localize the damage as a boundary box indicating areas of interest 

(see Figure 15b). Although such a boundary box detection approach assists maintenance 

engineers by accelerating the time of supervised inspections, especially when they are dealing 

with large-scale critical infrastructures (i.e., highways and national major roads), they fail to 

cope with the concept of prefabrication as well as of providing precise geometric measurements 

of the detected corrupted regions, useful for robotic-driven maintenance. Consequently, we 

require high-quality image information on a pixel level basis to determine the detailed shape 

of the cracked regions and to speed up the maintenance procedure of the road infrastructure. 

That can be achieved through semantic segmentation techniques, which aim to label each pixel 

of a given image with a corresponding class, thus providing masks of the cracked areas (see 

Figure 15c). 

 

In the present section, we address the problem of crack detection as a pixel-based semantic 

segmentation task. In this context, apart from accurately identifying, localizing, and classifying 

the material deterioration of the road infrastructure, we can determine its exact shape on a pixel 

level accuracy, useful for prefabrication, precise measurement, and automatic (e.g., robotic-

driven) maintenance. 

 

In contrast to local data processing that characterizes for instance a sliding window CNN 

classifier [22], recently global-local data processing architectures have been utilized especially 

in medical imaging. An example of a classifier for global-local data analysis is the FCNs [30] 

(see Figure 20) including their variants U-Nets [46]. An FCN model consists of two main parts: 

(a) a convolutional encoder with the main purpose of transforming the whole image into 

different scales (global processing) and (b) a classification part that maps the scaled images 

into class categories (local processing). Global-local data processing increases the 

classification accuracy since it provides a multi-scale image analysis framework, instead of 

classifying image local patches in an independent way one from another. It is noted that the 

term “deconvolution” in Figure 20 describes the inverse convolution (InvConv) process. 

Furthermore, the max-pooling operation of the encoder is non-linear, and thus, there is not a 

direct inverse procedure. Lastly, in the downsampling path, the FCN generates “intermediate 

predictions” at different scales, which are then merged together during the upsampling process 

to yield the final segmentation mask. 
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Figure 20: A schematic representation of the global-local analysis performed by a fully convolutional 

network model. 

 

In this work, we utilize a global-local data processing framework for crack defect localization 

using a U-Net structure (see Figure 21). U-Net [46] is an FCN variant with small modifications, 

originally designed for biomedical segmentation problems. U-Net's main differences compared 

to an FCN are: (i) its structure is symmetric, and (ii) the skip connections between the 

downsampling and the upsampling path apply a concatenation operator instead of a sum. Such 

a skip connection modification, as well as the symmetrical organization of the U-Net model, 

allows for better global-local information exchange. 

 

 
Figure 21: Architecture of the U-Net model presented in the work of [46]. 
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4.2 Degradation and road defect types 
 

As already mentioned, a variety of road defects and degradation are considered (e.g., cracks, 

potholes, blurred road markings). Regarding the inputs, analysis, and outputs of the sensing 

interface and AI component (see Figure 22) additional information can be found in the 

deliverable report D2.2: Architecture Specification. 

 

 
Figure 22: Sensing interface and AI component of the HERON system. 

 

Regardless of the sensor that the data is deriving from (e.g., sensors installed on the UGV or 

an aerial UAV), two different approaches were considered: (i) a multi-class and multi-label 

detection scheme and (ii) a binary semantic segmentation task. In the former case, as will be 

presented in Sections 4.4-4.6, the AI component evaluates the situation of the road and in 

parallel localizes the RoIs (e.g., localization of cracks, potholes, blurred road markings, and 

traffic cones) in order the navigation and maintenance process to be effectively planned. In the 

latter case, as will be demonstrated in Section 4.7, the AI component precisely localizes the 

defect (e.g., segmentation of crack faces), in order to determine and understand the exact shape 

of the defected region. Thereby, more sophisticated and challenging sensor-based manipulation 

strategies and robotic tasks will be able to be performed by the HERON platform, such as visual 

servoing and motion estimation. 

  



 
D3.1: AI - driven image segmentation and feature extraction 

 
 

35 

4.3 3D information extraction 
 

Image detection/segmentation alone does not provide all the information needed for the robot 

to complete the physical tasks it is meant to. It detects the required targets but only in the 2D 

frame of an image, instead of the 3D world frame of the robot. To tackle this challenge, we 

will be using a stereoscopic camera, to provide us with depth alongside 2D information.  

Consecutively, through this information the 3D location of the target can be deduced, relative 

to the camera. Then, this position can be translated into a relative position to the robot’s world 

frame, which is what is needed to proceed with its manipulation tasks. 

 

Stereo view could also be providing us with the required information to calculate the volume 

of cracks, potholes, or cones if needed, to further guide the physical tasks. For example, the 

filling procedure might need the volume information of the pothole to fill, to calculate the 

material needed to completely fill the gap. If this is the case, 3D features such as volume will 

be calculated. 
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4.4 Real-time traffic cone detection 
 

Great changes have taken place in intelligent technology such as object detection in road 

networks. Despite the technological progress, the demands for driving safety, efficiency, and 

automated maintenance systems have also increased significantly. There are crucial challenges 

such as the capability to cope with temporary and sudden circumstances such as accidents and 

road construction. Among the numerous objects, traffic cones need to be recognized since they 

present spatio-temporal visual appearance periodicity and are constantly replaced and moved 

in the road network. 

 

The present section outlines a deep learning approach to effectively recognizing traffic cones 

in roadwork images collected from multiple sources. This application was implemented with 

YOLOv5 algorithm which is widely used for object detection problems [16]. We created a 

dataset of RGB roadwork images that were annotated by engineer experts within the framework 

of the HERON project. The traffic cone identification task can be addressed as an on-road 

object detection problem. The aim, therefore, is to broaden current studies of object detection 

issues and adapt them to the requirements of contemporary road network issues. 

 

Within the HERON project, the aforementioned implementation can contribute to traffic road 

efficiency and safety development, while in parallel supporting the pre-and post- intervention 

phase including visual inspections and dispensing and removing traffic cones in an automated 

and controlled manner. Consequently, the HERON UGV by utilizing the state-of-the-art object 

detection YOLOv5 algorithm (see Section 4.1.2) will be able to carry out the dispatching and 

the removal process of the traffic cones effectively in an automated manner, thus avoiding 

accidental risks for the personnel and make the maintenance more secure, in particular when 

the weather conditions are adverse. 

 

The literature presents various noteworthy attempts at studies that use road images for object 

detection methods with deep learning techniques, in order to confront road issues [22]. Object 

detection methods can apply to different aspects of the above-mentioned issues. The work of 

[39] presents a single shot detection and classification of road users based on the real-time 

object detection system YOLO. This method is applied to the pre-processed radar range-

Doppler-angle power spectrum. The study of [24] suggests an on-road object detection using 

SSD which is a detection mechanism based on a deep neural network. In [26] is proposed a 

novel deep learning anchor-free approach based on CenterNet for road object detection. The 

paper of [37] focuses on an object detection system called YOLO in order to enhance 

autonomous driving and other types of automation in transportation systems. Object detection 

is essential for automated driving and vehicle safety systems. For this purpose, the article [17] 

compares five algorithms to inspect the contents of images, Region-based Fully Convolutional 

Network (R-FCN), Mask Region-based Convolutional Neural Networks (Mask R-CNN, Single 

Shot Multi-Box Detector (SSD), RetinaNet and YOLOv4. 

 

Obstacle recognition on road images is another aspect of object detection. The work of [47] 

implemented an obstacle detection and avoidance driverless car using Convolutional Neural 

Networks. In the paper of [40] a deep learning system, using Faster Region-based convolutional 

neural network was employed for the detection and classification of on-road obstacles such as 

vehicles, pedestrians, and animals. Tsung-Ming Hsu et al. presented a deep learning model to 

mimic driving behaviors by learning the dynamic information of the vehicle along with image 

information in order to improve the performance of a self-driving vehicle. For the 
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implementation of the model, they placed traffic cones on the road to collect the scene of 

avoiding obstacles [19]. 

 

Little work has been presented in the literature on cone detection with deep learning techniques. 

The work of [54] utilized a machine vision system with two monochrome cameras and two 

color cameras in order to recognize the color and position of traffic cones. Another approach 

is the study of [4], which presents an overview of object detection methods and used sensors 

and datasets in an autonomous driving application. [49] focuses on the detection of a 

construction barrel, which includes a construction cone, a looper cone, a barricade, and four 

types of signs, via a collection of road images. Ankit Dhall et al. presented an accurate traffic 

cone detection and estimation of their position in the 3D world in real-time [12] presents an 

implementation of a robust autonomous driving algorithm using the Viola-Jones object 

detection method for traffic cones recognition. The study of [2] proposes a lightweight neural 

network to perform cone detection from a racing car in order to research autonomous driving. 

Finally, the work of [53] presents a deep architecture called ChangeNet for detecting changes 

between pairs of images and expressing the same semantically. The dataset has 11 different 

classes of structural changes including traffic cones on road. 

4.4.1 Object detection model 

The presented system of this section utilizes the roadwork image dataset which is described in 

detail in 4.4.2 to identify traffic cones. Each RGB image was properly fed into the YOLOv5 

algorithm which was presented and analyzed in Section 4.1.2. In a nutshell, in the following 

sections, we present and evaluate a YOLOv5 algorithm for traffic cone recognition over a 

multisource roadwork image dataset. The utilized technique uses a deep learning framework, 

identifying traffic cones as an object detection scenario.  The model was able to achieve high 

scores and successfully managed the identification task. The architecture of YOLOv5 is 

illustrated in Figure 19. 

4.4.2 Dataset description 

To train and evaluate the deep learning object detector, a dataset that contains RGB images 

was collected and manually annotated using labelImg [52], which is a graphical image 

annotation tool. labelImg is written in Python and uses Qt for its graphical interface. The 

produced annotations (see Figure 23) are saved as .txt files that store the information of the 

annotated bounding boxes. 

 

 

0 0.372656 0.093814 0.054688 0.183505 
0 0.705469 0.116495 0.092188 0.220619 
0 0.800000 0.183505 0.087500 0.280412 
0 0.856250 0.213402 0.090625 0.307216 
0 0.897656 0.387629 0.176563 0.453608 
0 0.347656 0.650515 0.329688 0.698969 

(a) RGB image (b) YOLO annotation format 

Figure 23: Each RGB image (a) has a corresponding .txt file with the bounding box information (b) of 

the traffic cones (ID, x, y, w, h). 

 

In particular, for each RGB image (see Figure 23a) a corresponding text file was generated (see 

Figure 23b) that contains a number of rows equal to the number of the bounding boxes (i.e., 

traffic cones) in the specific image. As one can observe in Figure 23b, each row consists of 

five numbers: (i) An integer number, starting at 0, that represents the class ID, which therefore 

in our case always equals 0, since the cone detection task is a single class problem; (ii) the 

horizontal coordinate x of the central pixel of the bounding box; (iii) the vertical coordinate y 
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of the central pixel of the bounding box;  (iv) the width w of the bounding box and (v) the 

height h of the bounding box. It is noted that the central position of the bounding box (ii-iii), 

as well its dimensions (iv-v) are real numbers on a scale of 0 to 1, and, therefore, represent the 

relative location and size of the bounding box with respect to the whole image. 

 

The dataset contains RGB data from heterogeneous sources and sensors (e.g., DSLR cameras, 

smartphones, UAVs). Furthermore, the images vary in terms of illumination conditions (e.g., 

overexposure, underexposure), environmental landscapes (e.g., highways, bridges, cities, 

countrysides), and weather conditions (e.g., cold, hot, sunny, windy, cloudy, rainy, and snowy). 

In parallel, several images include various types of occlusions, thus making the traffic cone 

detection task more challenging. 

 

The total number of RGB images in the dataset is 540 with various resolutions ranging from 

114×170 to 2,100×1,400. It is underlined that the total number of traffic cones in the entire 

dataset is 947. Representative samples of the dataset are demonstrated in Figure 24. From the 

images of the whole dataset, 92.5% were used for training the deep model, and 7.5% for testing 

its effectiveness. Among the training data, 80% of them were used for training and the 

remaining 20% for validation. The traffic cone detection dataset is made available online at: 

https://github.com/ikatsamenis/Cone-Detection/ (accessed date 31 May 2022). 

 

 
Figure 24: Indicative images from the traffic cone detection dataset. 

 

https://github.com/ikatsamenis/Cone-Detection/
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4.4.3 Experimental setup - Model training 

Hence, for the training process, we utilized 500 images, 400 of which were included in the train 

set and 100 in the validation set. It is noted that the training data should include images with 

non-labeled objects (i.e., empty .txt files) and in particular, the negative samples without 

bounded boxes should be equal to the positive images with objects [8]. To this end, 50% of the 

data of both train and validation sets (i.e., 200 and 50 images respectively) are negative 

samples, while the rest contain at least one traffic cone. Lastly, it is underlined that to further 

generalize the learning process, we augmented the training data by horizontally flipping the 

corresponding images, thus increasing the train set size from 400 to 800. 

 

The YOLO object detector was trained and evaluated using an NVIDIA Tesla K80 GPU with 

12 GB of memory, provided by Google Colab. We trained the network, using batches of size 

32, for 200 epochs, and set the input image resolution to 448×448 pixels. This work is based 

on the YOLOv5 small model in order to reduce the computational cost of the detection task. 

Towards this direction, the network takes up less than 15 MB of storage and thus can be easily 

embedded in smartphone applications and various low-memory digital devices or systems, 

including drones and microcontrollers. 

4.4.4 Evaluation metrics 

The Intersection over Union (IoU) metric was employed in evaluating the performance of the 

proposed method. IoU is the most popular evaluation metric used in the object detection 

benchmarks [45]. In order to apply IoU, ground-truth bounding boxes and predicted bounding 

boxes from our model are needed. This metric is used to evaluate how close the predicted 

bounding boxes are to the ground-truth bounding boxes. The greater the region of overlap, the 

greater the IoU, and therefore the detection accuracy as shown in Figure 25. Consequently, IoU 

is a number from 0 to 1 that specifies the size of the overlapping area between prediction and 

ground truth. 

 

 
Figure 25: Calculation of the IoU metric. The predicted bounding box is depicted in green color and the 

ground truth in red. 

4.4.5 Experimental validation 

The proposed algorithm reached an excellent average IoU score of 91.31%±5.42% with a 

confidence level of 95% over the data of the test set. Moreover, the network demonstrated an 

average prediction time of 0.065±0.029 seconds per image. 
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The experimental results using the YOLOv5 architecture are shown in the next two subsections 

(see Sections 4.4.6 and 4.4.7). In particular, on the one hand, Figure 26 presents the detection 

capabilities of the proposed network in RGB images with traffic cones. On the other hand, 

Figure 27 depicts the performance of the deep learning model on road images without traffic 

cones in order to evaluate it in terms of misidentifications that lead to false-positive detections. 

In both these figures, the first column corresponds to the original RGB images followed by 

their ground truth bounding boxes in the second column. The third column illustrates the 

predicted bounding boxes with their corresponding confidence scores. Finally, the last column 

demonstrates the performance of the model and the IoU score of the respective input image. 

4.4.6 Evaluation of the object detector on road images with traffic cones 

In the specific section and in particular, in Figure 26 we demonstrate the detection capabilities 

of the proposed YOLOv5 architecture in the automated traffic cone detection task. More 

specifically, Figure 26 presents 20 RGB images of the test set that depict at least one traffic 

cone. It is noted that the images are unseen data during the training process of the deep network. 

As one can see in the aforementioned figure, and in particular in the third and fourth columns, 

the model showed excellent identification and localization performance of the traffic cones, 

even in challenging images that include extreme weather events [e.g., see Figure 26 (1), (17)], 

low light conditions [e.g., see Figure 26 (11)], and occlusions [e.g., see Figure 26 (15), (20)]. 

 

It is however emphasized that in very rare cases the model failed to detect (false negative) one 

of the traffic cones of the image [e.g., the cone on the left in Figure 26 (6)]. In parallel, in very 

rare cases the network misclassified an object (false positive) as a traffic cone [e.g., part of the 

safety barrier in Figure 26 (9)]. Nevertheless, it is underlined that the input data of the HERON 

AI system is consecutive RGB frames of a video sequence, and, therefore, even if the detection 

fails for the current frame, it is highly likely that it will succeed in the next ones. 
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 (a) Input RGB image (b) Ground truth (c) Object detection output (d) Performance 

Figure 26: Automated localization of traffic cones (red bounding boxes) on the test set of a custom 

dataset using small YOLOv5 deep model. 

4.4.7 Evaluation of the object detector on road images without traffic cones 

Similar to the previous section, in Figure 27 we demonstrate the identification capabilities of 

the proposed YOLOv5 network in the automated traffic cone detection task. More specifically, 

Figure 27 presents 20 RGB images of the test set that depict road infrastructures without traffic 

cones. It is noted that the images are unseen data during the training procedure of the model. 

As one can see in the aforementioned figure, and in particular in the third and fourth columns, 
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the model demonstrated state of the art classification performance, even in challenging images, 

such as for instance, data that include humidity, as in Figure 27 (5). 

 

It is however noted that in very rare cases the network misclassified an object (false positive) 

as a traffic cone [e.g., part of the asphalt, and in particular a road marking, in Figure 27 (11)]. 

Nevertheless, it is highlighted that the input data of the HERON AI system is consecutive RGB 

frames of a video sequence, and, thus, even if the automated recognition fails for a given frame, 

it is highly likely that it will succeed in the next ones. 
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Figure 27: Evaluation of the YOLOv5 object detector on road images without traffic cones. 
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4.5 Real-time road defect detection 
 

A country’s road infrastructure stimulates economic and social development since it provides 

access to markets, employment, and basic social services, such as education and healthcare. 

However, many factors, such as weather conditions, geographical location, road age, frequency 

of usage and more, lead to the road’s quality deterioration over time. Therefore, road 

maintenance plays a crucial role and requires regular monitoring and assessment of road 

conditions.  

 

Nowadays, efficient road maintenance mainly relies on human visual inspection or high-

performance sensors, which is time-consuming and expensive. In response to the 

abovementioned problem, many methods have been studied, such as the use of laser technology 

or image processing, in order to efficiently monitor and inspect road infrastructure. To this end, 

the focus, which is presented in this section, is to automate the detection of three main types of 

road damages, i.e., potholes, cracks, and blurred markings, by using one of the state-of-the-art 

deep learning algorithms, YOLOv5, on images captured from various RGB images. 

 

Many deep learning solutions have been proposed in the last years in order to provide a cost-

effective road infrastructure monitoring tool. More specifically, studies have been lately 

focused not only on detecting road defects but also on categorizing the defects into different 

types, since the differentiation among damage types is crucial for effective road maintenance 

planning. For example, in the work of [20] a method for pothole detection was developed. In 

addition, an approach for detecting two types of cracks (i.e., horizontal and vertical) was later 

proposed [56] and similarly, in another study the damages were classified into three types: 

vertical, horizontal and crocodile [1]. Later on, a more thorough classification was 

implemented, in which the damages are classified into eight different categories [33] (as shown 

on Table 10 of Section 4.5.2). Afterward, a road damage detection for multiple countries was 

developed [5], which expanded the dataset used in [33], which contained only images from 

Japan, with images from India and the Czech Republic. The proposed method categorized the 

damages into four main types: longitudinal/parallel cracks, transverse/perpendicular cracks, 

alligator/complex cracks, and potholes. The proposed dataset in [5] was made publicly 

available [6] and formed the basis for the organization of the Global Road Damage Detection 

Challenge (GRDDC), which led to many innovative solutions that are summarized in [7]. 

4.5.1 Object detection model 

Similar to the previous section, in which the automated traffic cone identification of the 

HERON system was demonstrated, the state-of-the-art object detection methods were analyzed 

and compared for the task of road defect detection. Finally, the YOLOv5 model was chosen as 

the basic framework for the current work, which consists of an end-to-end real-time object 

detector. The architecture of YOLOv5 is exemplified in Figure 19. Consequently, the focus of 

this section is to automate the detection of three main types of road damage, i.e., potholes, 

cracks, and blurred marking, by using one of the state-of-the-art deep learning algorithms, 

YOLOv5, on images captured from various RGB sensors. 

4.5.2 Dataset description 

The Road Damage Dataset 2019 [32] was utilized for the model training, which consists of 

13,135 road images captured in India, Japan, and the Czech Republic and contains more than 

30,000 instances of road damage. The instances for each defect used for training, are shown in 

Table 9. 
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Table 9: Number of instances per damage type in the train dataset. 

Damage type Number of instances 

Crack 15,235 

Pothole 2,259 

Blurred road marking 4,901 

 

The data collection involved collecting road images using vehicle-mounted smartphones, using 

a smartphone application that was designed for this task.  The aforementioned image capturing 

rate was chosen to prevent overlap or leakage during the picture collection when the average 

speed of the vehicle is approximately 40 km/h. 

 

In the work of [32] eight damage categories were considered in total, based on the Japanese 

Maintenance Guidebook for Road Pavement [35]. The deterioration is classified into two 

categories, namely pavement deterioration (D00, D01, D10, D11, D20, D40) and road marking 

deterioration (D43, D44), as exemplified in Table 10. An additional category has been added 

(D50), which is not considered damage, in order to prevent the misclassification of a utility 

hole and a pothole. However, in the current work, all the crack defect types are considered as 

one, the newly added category was excluded and consequently, the dataset is divided into three 

main categories: cracks, potholes and blurred markings. The sample images of the training 

dataset are visualized in Figure 28. 

 
Table 10: Road damage types and definitions considered in the work of [33]. 

Damage type Detail 
Class 

name 

Crack 

Linear Crack 

Longitudinal 
Wheel-marked part D00 

Construction joint part D01 

Lateral 
Equal interval D10 

Construction joint part D11 

Alligator Crack 
Partial pavement,  

overall pavement 
D20 

Other Damage 

Rutting, bump,  

pothole, separation 
D40 

Crosswalk blur D43 

White line blur D44 

Utility hole 

(maintenance hatch) 
D50 
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(a) 

 
 

(b) 

 
 

(c) 

 
Figure 28: Sample images from the training dataset for potholes, cracks, and blurred marking defects, 

captured in Japan (a), India (b), and the Czech Republic (c). 

 

In order to test the model, a custom dataset was created and manually annotated by engineer 

experts within the framework of the HERON project. In total, 50 RGB images were collected 

from various areas in Greece and online resources, using typical smartphone cameras, 

containing images with both road damage and without. Instances from all 3 categories are 

included, as well as their combination, as illustrated in Sections 4.5.6-4.5.10. 

4.5.3 Experimental setup - Model training 

The YOLO object detector was trained and evaluated using an NVIDIA Tesla K80 GPU with 

12 GB of memory, provided by Google Colab. We trained the network, using batches of size 

32, for 200 epochs, and set the input image resolution to 448×448 pixels. This work is based 

on the YOLOv5 small model in order to reduce the computational cost of the detection task. 

Towards this direction, the network takes up less than 15 MB of storage and thus can be easily 

embedded in smartphone applications and various low-memory digital devices or systems, 

including drones and microcontrollers. 
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4.5.4 Evaluation metrics 

Detection task 
As already mentioned in Section 4.4.4 popular similarity measure for object detection problems 

is the Intersection over Union (IoU) metric, also known as the Jaccard index, which is 

calculated using the predicted and ground-truth bounding boxes. Evidently, the bigger the 

overlap between the two bounding boxes, the higher the IoU score and therefore, detection 

accuracy. For object detection tasks, it is common to calculate precision and recall for a given 

IoU threshold value, e.g., IoU≥0.5. Therefore, a prediction is regarded as correct only if the 

IoU exceeds this limit. 

Classification task 
For the evaluation of the classification accuracy, the precision, recall, and F1-score metrics 

were chosen.  

 

Precision, also known as positive predictive value (PPV), measures the accuracy of the model's 

predictions and is calculated as seen in the following expression: 

 

 
𝑃𝑃𝑉 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(1) 

 

where true positives (predicted correctly as positive) are denoted as TP and false positives 

(predicted incorrectly as positive) as FP. It is noted that Precision, which is the ratio of correct 

positive outcomes to the total positive outcomes that the network considers, and thus indicates 

how good a network is when its output is positive. A low precision score implies a high number 

of false alarms. 

 

Similarly, recall, also known as sensitivity, measures how well the model predicts the total of 

positives and is calculated as seen in the following expression: 

 

 
𝑇𝑃𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2) 

 

where false negatives (incorrectly predicted as negatives) are denoted as FN. It is underlined 

that recall, which is the percentage of correct positive outcomes to the total of positive cases in 

the ground truth, and therefore it shows how many of the positive classes the network can 

correctly predict. A low recall score entails that the classifier has a high number of misses. 

 

Finally, the F1-score is a combination (harmonic mean) of these two last abovementioned 

metrics and is described as the harmonic mean of the precision and recall. It is calculated as in 

the following expression: 

 

 
𝐹1 = 2 ∙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(3) 

 

4.5.5 Experimental validation 

The results for the detection task are visualized in Figure 29 with a confidence level of 95% 

over the data of the test set. Regarding the computational complexity, the model needs an 

average time of 0.087 seconds to detect the road defects on an image. Additionally, a few 

correct, false and missed model predictions are presented alongside the original image and the 

ground truth in Sections 4.5.6-4.5.10. 
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Figure 29: Micro, macro and weighted IoU scores. 

 

The classification results are presented in Figure 30 and Figure 31 using different averaging 

and scores per class, respectively. It is noted that the micro average uses the global number of 

TP, FN, and FP and calculates directly the respective performance scores. On the other hand, 

macro average calculates the metric separated by class but without using weights for the 

aggregation. Lastly, the weighted average calculates the score for each class independently, but 

when adding them up it utilizes a weight that depends on the number of true labels in each 

class. 

 

 
Figure 30: Classification scores calculated with micro, macro, and weighted averaging, respectively. 
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Figure 31: Classification scores calculated per class. 

 

In a nutshell, in this section, an image-based solution for road infrastructure monitoring was 

presented. In the proposed solution the YOLOv5 detection model is utilized to detect and 

classify three types of road damages in the processed images. The final model was able to 

achieve an IoU score up to 88.89% for the detection task and an F1 score up to 80.72% for the 

classification task with precision and recall scores at 84.26% and 78.38%, respectively. 

 

The experimental results using the YOLOv5 architecture are shown in the next five subsections 

(see Sections 4.5.6-4.5.10). More specifically, (i) Figure 32 presents the detection capabilities 

of the proposed network in road images with cracks; (ii) Figure 33 illustrates the identification 

capabilities of the proposed network in road images with potholes; (iii) Figure 34 demonstrates 

the recognition capabilities of the proposed network in road images with blurred road markings, 

(iv) Figure 35 shows the localization capabilities of the proposed network in road images with 

more than one defects (i.e., cracks, potholes, and blurred road markings); and lastly (v) Figure 

36 depicts the performance of the deep learning model on road images without defects in order 

to evaluate it in terms of misidentifications that lead to false-positive detections. In all the 

aforementioned figures, the first column corresponds to the original RGB images followed by 

their ground truth bounding boxes in the second column. The third column shows the predicted 

bounding boxes with their corresponding confidence scores. Finally, the last column 

demonstrates the performance of the model on the classification task as well as the IoU scores 

of the respective input image regarding the object detection task. 

4.5.6 Evaluation of the object detector on road images with cracks 

In the specific section and in particular, in Figure 32 we demonstrate the detection capabilities 

of the proposed YOLOv5 architecture in the automated crack detection task. More specifically, 

Figure 32 presents 11 RGB images of the test set that depict at least one crack. It is noted that 

the images are unseen data during the training process of the deep network. As one can see in 

the aforementioned figure, and in particular in the third and fourth columns, the model showed 

satisfactory identification and localization performance of the cracks. 
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It is however emphasized that in very rare cases the model failed to detect (false negative) a 

crack defect of the image [e.g., Figure 32 (7)]. In parallel, in very rare cases the network 

misclassified an object (false positive) as a defect [e.g., Figure 32 (9)]. Nevertheless, it is 

underlined that the input data of the HERON AI system is consecutive RGB frames of a video 

sequence, and, therefore, even if the detection fails for the current frame, it is highly likely that 

it will succeed in the next ones. 
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IoUw = 94.41% 

(2) 

   

✔ Crack 
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(5) 
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(11) 

   

✔ Crack 

✖ Pothole 

✖ Road marking blur 

IoUm = 74.19% 
IoUM = 55.43% 

IoUw = 72.88% 

 (a) Input RGB image (b) Ground truth (c) Object detection output (d) Performance 

Figure 32: Automated localization of cracks (red bounding boxes) on the test set of a custom dataset 

using small YOLOv5 deep model trained on the dataset of [6]. 

4.5.7 Evaluation of the object detector on road images with potholes 

In the specific section and in particular, in Figure 33 we demonstrate the detection capabilities 

of the proposed YOLOv5 architecture in the automated pothole detection task. More 

specifically, Figure 33 presents 7 RGB images of the test set that depict at least one pothole. It 

is noted that the images are unseen data during the training process of the deep network. As 

one can see in the aforementioned figure, and in particular in the third and fourth columns, the 

model showed satisfactory identification and localization performance of the potholes. 

 

It is however emphasized that in very rare cases the model failed to detect (false negative) a 

pothole defect of the image [e.g., Figure 33 (3)-(4)]. Nevertheless, it is underlined that the input 

data of the HERON AI system is consecutive RGB frames of a video sequence, and, therefore, 

even if the detection fails for the current frame, it is highly likely that it will succeed in the next 

ones. Lastly, the model, as can be seen in Figure 33, did not misclassify an object as a defect 

(false positive) in any of the test RGB images. 
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(3) 
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 (a) Input RGB image (b) Ground truth (c) Object detection output (d) Performance 

Figure 33: Automated localization of potholes (pink bounding boxes) on the test set of a custom dataset 

using small YOLOv5 deep model trained on the dataset of [6]. 

4.5.8 Evaluation of the object detector on road images blurred road markings 

In the specific section and in particular, in Figure 34 we demonstrate the detection capabilities 

of the proposed YOLOv5 architecture in the automated blurred road marking detection task. 

More specifically, Figure 34 presents 5 RGB images of the test set that depict at least one 

blurred road marking. It is noted that the images are unseen data during the training process of 

the deep network. As one can see in the aforementioned figure, and in particular in the third 
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and fourth columns, the model showed satisfactory identification and localization performance 

of the blurred road markings. 

 

It is however emphasized that in very rare cases the network misclassified an object (false 

positive) as a defect [e.g., Figure 34 (2)]. Nevertheless, it is underlined that the input data of 

the HERON AI system is consecutive RGB frames of a video sequence, and, therefore, even if 

the detection fails for the current frame, it is highly likely that it will succeed in the next ones. 

Lastly, the model, as can be seen in Figure 34, did not fail to detect (false negative) a blurred 

road marking in any of the test RGB images. 
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Figure 34: Automated localization of blurred road markings (orange bounding boxes) on the test set of 

a custom dataset using small YOLOv5 deep model trained on the dataset of [6]. 
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4.5.9 Evaluation of the object detector on road images with more than one defects 

In the specific section and in particular, in Figure 35 we demonstrate the detection capabilities 

of the proposed YOLOv5 architecture in the automated defect (i.e., cracks, potholes, and 

blurred road markings) detection task. More specifically, Figure 35 presents 7 RGB images of 

the test set that simultaneously depict more than one category of defects. It is noted that the 

images are unseen data during the training process of the deep network. As one can see in the 

aforementioned figure, and in particular in the third and fourth columns, the model showed 

satisfactory identification and localization performance of the defects. 

 

It is however emphasized that in very rare cases the model failed to detect (false negative) a 

defect of the image [e.g., Figure 35 (1)-(3),(5)-(6)]. Nevertheless, it is underlined that the input 

data of the HERON AI system is consecutive RGB frames of a video sequence, and, therefore, 

even if the detection fails for the current frame, it is highly likely that it will succeed in the next 

ones. Lastly, the model, as can be seen in Figure 35, did not misclassify an object as a defect 

(false positive) in any of the test RGB images. 
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(5) 
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 (a) Input RGB image (b) Ground truth (c) Object detection output (d) Performance 

Figure 35: Automated localization of (i) cracks (red bounding boxes), (ii) potholes (pink bounding 

boxes), and (iii) blurred road markings (orange bounding boxes) on challenging images containing more 

than one road defect using small YOLOv5 deep model trained on the dataset of [6]. 

4.5.10 Evaluation of the object detector on road images without road defects 

Similar to the previous sections, in Figure 36 we demonstrate the identification capabilities of 

the proposed YOLOv5 network in the automated defect detection task. More specifically, 

Figure 36 presents 20 RGB images of the test set that depict road infrastructures without 

defects. It is noted that the images are unseen data during the training procedure of the model. 

As one can see in the aforementioned figure, and in particular in the third and fourth columns, 

the model demonstrated state of the art classification performance, even in challenging images, 

such as for instance, data that include humidity, as in Figure 36 (5). 

 

It is however noted that in very rare cases the network misclassified an object (false positive) 

as a road defect [e.g., Figure 36 (2), (8), (13), (15)]. Nevertheless, it is highlighted that the input 

data of the HERON AI system is consecutive RGB frames of a video sequence, and, thus, even 

if the automated identification fails for a given frame, it is highly likely that it will succeed in 

the next ones. 
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 (a) Input RGB image (b) Ground truth (c) Object detection output (d) Performance 

Figure 36: Evaluation of the YOLOv5 object detector on road images without defects. 
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4.6 Real-time road surface monitoring using UAV images 
 

Usually, inspections of civil engineering structures, such as road infrastructures, are carried out 

by technicians utilizing rope and harness access equipment, in conjunction with construction 

machineries such as lifts and cranes. These traditional inspection techniques not only pose 

safety risks, that may lead to worker injuries and accidents, but are also costly and time-

consuming. Furthermore, they require heavy machinery that results in hindrances in road and 

waterway traffic. It is also noted that the identification of the corroded areas is performed using 

visual methods, potentially leaving damage unnoticed in the inaccessible areas of the 

structures. Therefore, it is mandatory to adopt innovative inspection methods, through which 

efficient defect identification is promoted, while in parallel the workers’ safety is ensured. 

 

On this basis, unmanned aerial vehicles (UAVs) offer several advantages in processes that 

involve remote sensing data acquisition. More specifically, by exploiting drone technology we 

are able to remotely, and therefore safely, collect data from otherwise virtually or physically 

unreachable areas. Also, we can effectively gather timely and on-demand images [11], by 

avoiding short-term traffic arrangements, that require time-consuming permits and result in 

traffic jams, shutdowns, accidents, and CO2 emissions. Hence, it is underlined that UAVs are 

emerging as a suitable and cost-effective method for gathering high-quality image data, that 

encompass key spatial, textural, and chromatic information of the under-inspection structure 

[3]. 

 

HERON addresses existing limitations in maintenance and upgrading by incorporating robot-

assistive RI processes that (i) increase automation in the maintenance process, (ii) minimize 

traffic delays during maintenance, and (iii) improve workers’ safety and avoidance of weather 

hazards. HERON provides effective and faster repairs for RIs and also supports prefabrication 

strategies that jointly, will reduce the maintenance or upgrading cost and time needed to 

complete a task, innovates on networking solutions for RI management, exploits drones for 

inspecting larger areas and adopts novel ML tools which can transform traditional RI to 

intelligent assets. HERON concepts can stimulate new procedures for managing and operating 

RI, and leverage previous knowledge on robotics, vision systems, ML, sensing and monitoring 

systems and automated inspection.  

 

The use of drones will favor the monitoring of RI that are difficult to access, and in the case of 

road maintenance, they will allow having a current model of defects to plan automated actions 

for the next day's maintenance tasks, avoiding visual inspection of the personnel (driving 

vehicles and walking on the road) and therefore, possible accidents. Drone technology will 

make it possible to reduce the overall cost of these costly interventions. Consequently, the use 

of aerial drones within the HERON system can provide the bigger picture of the area under 

maintenance or/and upgrading intervention procedure. 

 

4.6.1 Object detection model 

As in the previous sections, in which the automated traffic cone (see Section 4.4) and defect 

(see Section 4.5) detection of the HERON system were presented, the state-of-the-art object 

detection frameworks were analyzed, evaluated and compared for the problem of road defect 

detection from UAV imagery. Again, the YOLOv5 model was chosen as the basic framework 

for the current work, the architecture of which is illustrated in Figure 19. Thereby, the focus of 

this section is to automate the identification of two main types of road damage, i.e., potholes 
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and cracks, by utilizing one of the state-of-the-art computer vision frameworks, YOLOv5, on 

image data that derive from RGB sensors mounted on UAVs. 

4.6.2 Dataset description 

In order to train and evaluate the YOLOv5 model the dataset that is presented in the work of 

[51] was utilized. The data (see Figure 37) was created in order to represent the situation of the 

Spanish roads and automate the detection of two main types of road damage, i.e., potholes and 

cracks. The dataset utilized for the evaluation of the results of the specific scientific article [51] 

has been published at https://github.com/luisaugustos/Pothole-Recognition. 

 

 
Figure 37: Sample images from the dataset [51] that contain UAV images for crack and pothole 

recognition. 

 

In particular, initially, it contained 568 labeled road images, with a resolution of 3840×2160 

pixels, from RGB sensors mounted on a UAV. After the pre-processing process, the total 

number of labeled images in the dataset was 1,362 images. More specifically, the following 

pre-processing process was applied to each RGB image: 

 

• Auto-orientation of pixel data (with EXIF-orientation stripping) 

• Resize to 1200×900 [Fill (with center crop)] 

 

Furthermore, in order to generalize the detection capabilities of the trained model, the following 

augmentation process was applied in order to create three versions of each source UAV image: 

 

• 50% probability of horizontal flip 

• 50% probability of vertical flip 

• Random rotation of between -15 and +15 degrees 

• Salt and pepper noise was applied to 5 percent of the pixels 

 

Thereby, after the preprocessing procedure among the 1,362 UAV images, 70% were used for 

training (1,191 images), 20% for validation (114 images), and 10% for testing (57 images) the 

detection capabilities of the trained deep model. 

https://github.com/luisaugustos/Pothole-Recognition
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4.6.3 Experimental setup - Model training 

The YOLO object detector was trained and evaluated using an NVIDIA Tesla K80 GPU with 

12 GB of memory, provided by Google Colab. We trained the network, using batches of size 

32, for 200 epochs, and set the input image resolution to 448×448 pixels. This work is based 

on the YOLOv5 small model in order to reduce the computational cost of the detection task. 

Towards this direction, the network takes up less than 15 MB of storage and thus can be easily 

embedded in smartphone applications and various low-memory digital devices or systems, 

including drones and microcontrollers. 

4.6.4 Evaluation metrics 

Regarding the detection task, similarly to Sections 4.4.4 and 4.5.4, we will utilize the 

Intersection over Union (IoU), which is a popular evaluation metric used to measure the 

accuracy of an object detector on a particular dataset. In parallel, regarding the classification 

task of the road defects on a given UAV image the performance of the implemented 

architecture is evaluated in terms of three metrics as follows: (i) precision [see eq. (1) in Section 

4.5.4], (ii) recall [see eq. (2) in Section 4.5.4], and (iii) F1-score [see eq. (3) in Section 4.5.4]. 

4.6.5 Experimental validation 

The performance of the object detection task is illustrated in Figure 38 with a confidence level 

of 95% over the data of the test set. Regarding the computational complexity, the model needs 

an average time of 0.059 seconds to identify the road defects on a UAV image. In parallel, the 

classification capabilities in terms of the performance metrics that were demonstrated in 

Section 4.6.4 are shown in Figure 39 as well as Figure 40. 

 

 
Figure 38: Micro, macro and weighted IoU scores. 
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Figure 39: Classification scores calculated with micro, macro, and weighted averaging, respectively. 

 

 
Figure 40: Classification scores calculated per class. 

 

Consequently, in this section, a computer vision framework, which utilizes the YOLOv5 

detector and drone images, was demonstrated. The proposed system can classify and localize 

two classes of road defects (i.e., cracks and potholes), in the processed UAV imagery. The final 

network was able to demonstrate an IoU score up to 95.64% for the detection task and an F1- 

score up to 67.82% for the classification task with precision and recall scores of 52.83% and 

96.15%, respectively. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Micro Macro Weighted

Precision

Recall

F1-score

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Crack Pothole

Precision

Recall

F1-score



 
D3.1: AI - driven image segmentation and feature extraction 

 
 

69 

4.6.6 Evaluation of the object detector on UAV images with cracks and potholes 

In this section, we present the experimental results that the YOLOv5 model demonstrated 

during the evaluation process. More specifically, in Figure 41 one can observe the automated 

identification capabilities of the proposed YOLOv5 architecture in the automated crack and 

pothole detection task from UAV images. The aforementioned figure shows 25 indicative 

drone images of the test set and in particular, the first column corresponds to the original RGB 

drone images followed by their ground truth bounding boxes in the second column. The third 

column shows the predicted bounding boxes with their corresponding confidence scores. 

Finally, the last column demonstrates the performance of the model on the classification task 

as well as the IoU scores of the respective input image regarding the defect detection task. 

 

To effectively explore the performance of the model, the test images can contain: (i) only cracks 

[e.g., Figure 41 (1)], (ii) only potholes [e.g., Figure 41 (2)], (iii) both cracks and potholes [e.g., 

Figure 41 (3)], (iv) healthy asphalt surface without degradation [e.g., Figure 41 (15)]. It is noted 

that the images are unseen data during the training process of the deep model. As one can see 

in the aforementioned figure, and in particular in the third and fourth columns, the model 

showed satisfactory recognition and localization performance of the cracks and potholes. 

 

It is however noted that in rare cases the network failed to identify (false negative) a defect of 

the drone image [e.g., Figure 41 (24)-(25)]. In parallel, in rare cases, the model misclassified 

an object (false positive) as a defect [e.g., Figure 41 (23)]. Nevertheless, it is emphasized that 

the input data of the HERON AI system is consecutive RGB frames of a video sequence, and, 

therefore, even if the detection fails for the current frame, it is highly likely that it will succeed 

in the next ones. 
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(5) 
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 (a) Input RGB image (b) Ground truth (c) Object detection output (d) Performance 

Figure 41: Automated localization of (i) cracks (pink bounding boxes) and (ii) potholes (red bounding 

boxes) on UAV images using small YOLOv5 deep model trained and tested on the dataset of [50]. 
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4.7 Pixel-level crack semantic segmentation 
 

As presented in the previous sections, object detection tasks provide a rough localization of the 

target objects or defects, and they are the most important because of the instantiation they 

achieve (distinguishing between different instances of targets). However, object detection does 

not provide precise localization at a pixel level, which is required in some cases, such as crack 

detection. Thus, by applying semantic segmentation, the precise location and direction of 

cracks can be acquired and consecutively be provided as guidance to the robot for repairing 

them. 

 

Many state-of-the-art deep learning models exist in both object detection and semantic 

segmentation, and even in various combinations of them, such as Mask-RCNN [18]. A model 

such as this though, cannot be utilized due to a lack of training data in the scenario of crack 

detection. Thus, separate models for detection and segmentation will be used because of the 

separate relevant training data. 

4.7.1 Dataset description 

The dataset that we deemed to be useful for the solution of the crack detection problem is 

“Cracks and Potholes in Road Images Dataset” by Passos et al [38]. This is a publicly available 

dataset, and it was developed using images made available by the Brazilian National 

Department of Transport Infrastructure. It contains images of defects (cracks, potholes) in 

asphalted roads in Brazil, and it was made in order to be used for a study on the detection of 

cracks and potholes in asphalted roads, using texture descriptors and machine learning 

algorithms such as Support Vector Machine, K-Nearest Neighbors and Multi-Layer Perceptron 

Neural Network. The contained images are from highways in the states of Espírito Santo, Rio 

Grande do Sul, and the Federal District. They were selected manually, following criteria such 

as not showing signs of vehicles and people, as well as not having image defects. This work 

consists of 2,235 samples of roads where each produces 1 image and 3 masks that delimit the 

vehicle's path and crack and pothole defects (see Figure 42). 

 

 
Figure 42: Example of the original image (a) and the masks corresponding to the road region (b), pothole 

(c), and crack (d). 
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The dataset images were extracted from videos captured by an HD camera of 1280x729 

resolution and 16:9 aspect ratio, mounted on a Highway Diagnostic Vehicle (HDV). The 

camera is installed on the highest part of the vehicle, facing the front and with an inclination 

closer to orthogonality. Thus, the visibility of the pavement is 15 meters. This camera captures 

images with a minimum resolution of 4 megapixels, every 5 meters away. The setup can be 

seen in the following figure below (see Figure 43). 

 

 
Figure 43: Representation of the HDV used by NDTI: (a) satellite tracking system (b) high-resolution 

camera (c) recording cameras (d), precision odometer and (e) laser sensors. 

 

To check the feasibility of the dataset and its capacity for properly training a neural network, 

at the time of writing only the crack annotations have been used. In further work, if the 

segmentation of potholes is deemed useful, they will be included in the training. 

4.7.2 Semantic segmentation model 

For the segmentation task with the pre-mentioned dataset, U-net architecture has been chosen 

as described in Section 4.1.3. Though not the most advanced architecture currently available, 

it is a baseline of architectures that fit this specific task and thus, is suitable for the first step, if 

not achieving the required goal. 

 

U-net can be effective in situations where the segmentation annotation of some classes is sparse 

and the training images are few, which is exactly the case with this dataset. Because annotation 

happens on pixel level and cracks occupy only a few hundred pixels per image, the crack and 

non-crack class ratio is less than 99.9%. This is still a heavily unbalanced dataset, thus image 

augmentations and modifications of the base architecture have been applied, which will be 

explained below. 

 

To begin with, the model that we have trained consists of a Fully Connected Network (FCN) 

as the base model (head), and a Unet-s5-d16 as the backbone (encoder-decoder). The input 

image size is 1024×640 pixels, and it goes through various augmentations. These include 

random resizing, random crop of 256×256 pixels, random image flip, photometric distortions 

and normalization. As Loss function, Focal Loss have been used in combination with weighted 

Dice Loss with class weights of 0.01 and 0.99 for non-cracks and cracks classes respectively.  

4.7.3 Evaluation metrics 

To evaluate properly the performance of the training, two metrics has been used. Sørensen–

Dice coefficient (F1 score) and Accuracy.  
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Pixel Accuracy is a simple metric, but it gives an easy evaluation of the results. It is defined as 

the percent of pixels in your image that is classified correctly. It does not always reflect the real 

performance of the training as it fails to include some edge cases. Thus, other more robust 

metrics are used too. 

 

Precision and recall (see Figure 44) are other two metrics that are widely used in computer 

vision detection and segmentation tasks. Precision can be defined as the fraction of correctly 

identified pixels out of all the pixels of the respective class. Recall, on the other hand, can be 

defined as the percentage of pixels that belong to a specific class and have been correctly 

retrieved. 

 

 
Figure 44: Precision and recall. 

 

The dice coefficient is defined as twice the area of overlap divided by the total number of pixels 

in both images (see Figure 45). It can also be defined as the harmonic mean of the precision 

and the recall metrics. It is a popular metric used in segmentation tasks alongside the IoU metric 

(see Figure 25). 

 

 
Figure 45: Illustration of Dice Coefficient. 2×Overlap/Total number of pixels. 
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4.7.4 Model training and results 

This setup has been trained for 200 epochs, with a gradient descent optimizer, at a learning rate 

of 0.01, with a momentum of 0.9, and a weight decay of 0.0005. The dataset has been split into 

80% training set and 20% test set. 

 

The overall performance of the training can be observed in Table 11. The averaging happens 

between the two classes, “cracks” and “background”. Although the average values are 

promising for this kind of task, do not reflect the actual target of the task, which is only crack 

segmentation. Table 12 shows the values only relevant to the “crack” class, which can give us 

better insights for correction. 

 
Table 11: Average metrics of the current training setup on the test dataset. 

Average accuracy Average F1-score Average Precision Average Recall 

97.51% 61.35% 58.13% 69.85% 

 
Table 12: Average metrics for each class on the test dataset. 

Class F1-score (Dice) Precision Recall 

Background 98.73% 99.44% 98.04% 

Crack 23.97% 16.83% 41.65% 

 

4.7.5 Evaluation of the U-Net model 

In this subsection, and in particular in Figure 46, a small sample of the test set will be shown 

along with its ground truth mask and the prediction of the trained crack segmentation model. 

The individual metric results will also be quoted for each picture. 

 

Noticeable is the fact that the metric measures greatly vary between these examples (see Figure 

46). There are cases where the recall rate reaches 90% (sample 6), meaning that most of the 

cracks have been found, while others fail to go above 7% (sample 4). This seems to happen 

when the annotations are very fine and few in number. These cases can be improved in future 

work by changing the type of the neural network and probably using a deeper one that can 

comprehend finer details.  

 

An additional problematic situation that drops the average precision score, is where large 

groups of pixels are wrongly identified as cracks, for example, shadows; as seen in the 9th 

sample. This probably happens due to unoptimized hyperparameters or due to the current 

configuration of the loss functions. Further changes and configurations as well as new image 

augmentations will be tested out to improve the results, eliminate the identified problems, and 

reach the required target metrics. 

 

(1) 
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(3) 

   

Crack F1-score = 33% 
Crack Precision = 29% 

Crack Recall = 40% 

 

(4) 

   

Crack F1-score = 9% 

Crack Precision = 16% 
Crack Recall = 7% 

 

 

(5) 

   

Crack F1-score = 9% 

Crack Precision = 6% 
Crack Recall = 20% 

 

(6) 

   

Crack F1-score = 14% 

Crack Precision = 8% 

Crack Recall = 90% 
 

(7) 

   

Crack F1-score = 35% 

Crack Precision = 48% 

Crack Recall = 27% 
 

(8) 

   

Crack F1-score = 47% 

Crack Precision = 64% 

Crack Recall = 37% 

 

(9) 

   

Crack F1-score = 2% 

Crack Precision = 1% 

Crack Recall = 52% 
 

 (a) Input RGB image (b) Ground truth (c) Segmentation output (d) Performance 

Figure 46: Evaluation of the U-Net model on road images with crack defects. 
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5 Conclusions 
 

This deliverable report, namely “AI - driven image segmentation and feature extraction”, 

demonstrates insights related to the automated continuous monitoring of the road 

infrastructure. This report is a compilation of the work that was completed in the framework 

of task 3.1 “AI-driven image segmentation and feature extraction”. In particular, the work 

focused on specific deep machine learning toolkits that are fed with optical data coming from 

various sensors (e.g., RGB, stereo cameras) and have been developed for feature representation 

of the various HERON maintenance and upgrading tasks, such as for instance, potholes, blurred 

road markings, and cone detection as well as crack localization and segmentation. 

 

Developed methodologies rely on optical data deriving from fixed optical sensors (e.g., RGB, 

stereo cameras), mounted on a maintenance robotic vehicle and/or aerial inspection drones. It 

is noted that the UGV is utilized for the detailed inspection of the road surface as well as the 

robotic maintenance interventions, whereas the UAV could monitor the general whole 

procedure and give the “big-picture” of the intervened area by proving additional insights 

regarding the state of the road corridor. 

 

In this report, various state-of-the-art computer vision approaches have been developed in order 

to efficiently address the automated inspection of the road infrastructures. The employed 

schemes involve image classification (for the identification of the deterioration category), 

object detection (for the localization of the corresponding defect), and semantic segmentation 

(e.g., pixel-wise classification of crack defects) in order to provide a detailed and effective 

automated assessment of the road infrastructure state. 
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